# SAE J1939-specific Cyber Security for Medium and Heavy-Duty Vehicles

Subhojeet Mukherjee

Ph.D. Final Defense



Introduction

Background

**Contribution 1** 

Contribution 2

**Contribution 3** 

Conclusion and Future Work

Introduction

Background

**Contribution 1** 

Contribution 2

**Contribution 3** 

Conclusion and Future Work

# Mediumand Havy-Duty(MH) Vehicles

- Part of the <u>US Critical Infrastructure</u>
  - Goods transport
  - Package delivery
  - Emergency services
  - School transport
  - Public transport
- About six different classes of vehicles weighing 14,001 pounds and above
  - About <u>13,000,000</u> registered trucks and buses on road in 2019



<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u> <u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u> <u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u> <u>This Photo</u> by Unknown Author is licensed under <u>CC BY-NC-ND</u> <u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA-NC</u>



### Remte Threatsto In-Vehide Hectronics

- Remote access can be obtained through open and vulnerable channels [Chec11, Mill14]
- Openly available standards can be leveraged to craft attacks
- Messages can be transmitted to
  - Control vehicle operations
  - Disrupt vehicle operations
  - Spoof vehicle information to the driver, fleet manager, etc.
- Practical attacks have been demonstrated at the application and network management layer of the SAE J1939 specifications



### State-of-the-art in In-Vehicle Searity

#### Mostly for passenger vehicles

#### Four directions of research having drawbacks

1.Behavioral anomaly-based

• Current solutions are offline trained

2.Rule-based

- Current solutions use rules based on message content only
- 3.Sender authentication-based
  - Attacks can be security enforcement abiding
- 4.Specification-based
  - Attacks can be security enforcement abiding

### Drawbacks Remote of in-vehicle threats security Need for security research

# Research tions And Contributions

Can weaknesses in the data-link layer specifications of SAE J1939 be exploited to attack in-MHD vehicle ECUs?

Can a system be designed to **detect network anomalies** on an SAE J1939 network in an **online manner**?

Can a rule-based system be designed to detect threatening SAE J1939 messages as they are being transmitted based on features other than message content? Three denial-of-service attacks on the data-link layer specifications that can disrupt normal operations of an ECU

An online anomaly-based intrusion detection system that

- Models network behavior through SAE J1939 specified concepts
- Flags abnormal deviations from normal behavior as security infringements

A **rule-based intrusion detection and prevention system** is presented that

- Allows identifying malicious messages using features other than message content only
- Is **real-time** and can be used to disrupt malicious messages in transmission

Introduction

Background

**Contribution 1** 

**Contribution 2** 

Contribution 3

Conclusion and Future Work

Primer on SAE J1939 and Controller Area Network (CAN)

**Research Trucks** 

**Threat Model** 

Review of In-Vehicle Security Solutions

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Primer on SAE J1939 and Controller Area Network (CAN)

**Research Trucks** 

**Threat Model** 

Review of In-Vehicle Security Solutions



Lowest CAN ID wins bus arbitration

SAEJ1999 Message Processing

12

ACK: Acknowledgement

EOF: End of Frame

#### SAE J1939 Digital Annex

Parameter Placeme



13

### Parameter Group Transmission

- Two types of transmission types
  - Periodic
    - Most messages on the network are transmitted periodically
  - Ad hoc
    - E.g. Request-responses, commands





Abbreviations RTS: Request to Send CTS: Clear to Send DT: Data Transfer EoMA: End of Message Acknowledgment



# **A**doods

Introduction

Background

**Contribution 1** 

**Contribution 2** 

Contribution 3

Conclusion and Future Work

Primer on SAE J1939 and Controller Area Network (CAN)

**Research Trucks** 

**Threat Model** 

Review of In-Vehicle Security Solutions

### Research Trucks



- PACCAR PX-7-powered 2014 Kenworth T270 truck
  - Readily accessible for experimentation
- Accessed SAE J1939 network description
  - 3 ECUs
    - Cummins 2350 engine control module
      - Hosts engine controller and engine retarder applications
    - Bendix EC-60 brake ECU
    - Allison RDS-2000 transmission ECU
  - 250 kbps CAN bus
- 600 RPM idle engine speed



- PACCAR MX-13-powered 2015 Kenworth T660 truck
  - No physical access
- Access to recorded traffic
  - ~ 7 minutes long drive around an industrial block
    - Included three hard braking events
  - 137318 messages
  - Five transmitting controllers
    - Engine, brake, retarder, cab, diesel particulate filter
  - 41 unique parameter groups, 35 periodic and 6 ad hoc

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Primer on SAE J1939 and Controller Area Network (CAN)

**Research Trucks** 

**Threat Model** 

Review of In-Vehicle Security Solutions

### Attacker Capabilities

- Cannot
  - Physically access the truck
  - Bypass CAN controller
  - Manipulate bits in transit
  - Exercise insider capabilities
    - E.g. reprogram ECUs
- Can
  - Read, interpret and write SAE J1939 messages
    - Spoof ECU addresses while sending
  - Communicate with ECUs on the same or different networks to which they have access to



### Attack Strategies: Hgh Volume Denial-of-service (HNDS)

#### Description

Consume the resources available to the ECUs through rapid injection of SAE J1939 messages

#### https://youtu.be/ICI6v8SIjOY



Demonstration

- Network overload attack [Mill13]
  - Gain exclusive access to the bus by sending a high volume of frames with an ID 0 to win as many arbitrations as possible

### Attack Strategies: Low Volume Denial-of-service (LVDoS)

#### Description

Disable ECU services by injecting messages at a normal rate

https://youtu.be/HE-JZi\_nS7I



#### Demonstration

- Address claim attack [Murv18]
  - Claim ECU address(es) by sending address claim message with lower NAME value

### Attack Strategies: Command Control (GrC)

#### Description

Sending SAE-J1939 defined messages to command cyber-physical functions of ECUs

#### https://youtu.be/ZfXkDPU3WMQ



Demonstration

- Engine control attack [Bura16]
  - Control engine speed by sending engine control request messages with PGN 0x00000
- Retarder jam attack [Bura16]
  - Disable engine retardation by sending 0% torque to the engine retarder in messages with PGN 0x00000 when vehicle is at speeds below 30 mph
- Pedal jam attack [Bura16]
  - Disable acceleration by sending very low (< 0%) torque to the engine controller in messages with PGN 0x00000



#### Description

Sending random CAN ID and data bytes sent at high rates to understand ECU capabilities and/or invoke erratic behavior

- No published instances on medium and heavy-duty vehicles
  - Gauges on the instrument cluster moved in an erratic manner on the Kenworth T270 research truck but no physical impact noticed

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Primer on SAE J1939 and Controller Area Network (CAN)

**Research Trucks** 

**Threat Model** 

Review of In-Vehicle Security Solutions

| Classification                     | Method                                                                                                                                                                         | Pros                                      | Cons                                                                                                                                                                                                                |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sender<br>Authentication-<br>based | <ul> <li>Authenticate messages through<br/>digital signatures created using pre-<br/>shared keys</li> </ul>                                                                    | No false<br>positives                     | <ul> <li>Resource intensive [Aliw18]</li> <li>Unable to detect attacks from<br/>legitimate but compromised senders</li> <li>Introduces communication overhead</li> <li>Key management can be challenging</li> </ul> |
| Behavioral<br>Anomaly-based        | <ul> <li>Learn normal behavior from offline collected data</li> <li>Flag abnormal deviations from normal as attack</li> </ul>                                                  | Can detect<br>unknown (0-<br>day) attacks | <ul> <li>Does not account for normal behavior<br/>that is not encountered during the<br/>training phase [Stac19]</li> </ul>                                                                                         |
| Specification-<br>based            | <ul> <li>Build reference model for normal behavior using manufacturer specifications</li> <li>Flag deviations from normal as attack</li> </ul>                                 | Can detect<br>unknown (0-<br>day) attacks | <ul> <li>Unable to detect attacks that obey specifications</li> </ul>                                                                                                                                               |
| Rule-based                         | <ul> <li>Create a database of attack<br/>patterns based on CAN ID and data</li> <li>Flag frames as malicious if<br/>matching patterns are found in the<br/>database</li> </ul> | Low false<br>positives                    | <ul> <li>Not all malicious CAN frames can be<br/>identified based on their ID and data</li> </ul>                                                                                                                   |

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Three denial-of-service attacks on the data-link layer specifications

The Testing Setup

The Request Overload Attack

The Connection Exhaustion Attack

The False Request To Send (RTS) Attack

Summary

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Three denial-of-service attacks on the data-link layer specifications

The Testing Setup

The Request Overload Attack

The Connection Exhaustion Attack

The False Request To Send (RTS) Attack

Summary

# TestingSetup 1(Remte Testbench)

- Setup by collaborators at the University of Tulsa
- Configuration
  - BeagleBone Black node controllers
  - Bendix Electronic Brake Controller (EBC)
  - Caterpillar 2000 engine control module (ECM)
    - Hosts an engine controller and a retarder controller application
- Features
  - ECM transmitting majority of the messages
  - ~ 30% high priority messages on each configuration
  - ~ 100% high priority traffic transmitted by ECM on each configuration



# TestingSetup2(Local Testbench)

- Four variations
- Configuration
  - Bendix Electronic Brake Controller (EBC)
  - Four different engine control modules (ECM)
    - Each hosts an engine controller and a retarder controller application
- Features
  - ECM transmitting majority of the messages
  - ~ 50% high priority messages on each configuration
  - ~ 70% high priority traffic transmitted by ECM on each configuration



Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Three denial-of-service attacks on the data-link layer specifications

The Testing Setup

The Request Overload Attack

The Connection Exhaustion Attack

The False Request To Send (RTS) Attack

Summary



- Specification
  - All directed requests to an ECU must be processed.
- Attack
  - Send a high volume of SAE J1939 requests to the target ECU
- Expected result
  - In an attempt to serve the sent requests, the ECU fails to perform regular, more critical tasks like transmission of periodic messages



#### Observations



#### Line color significance:

**Red**: On flooding with messages of ID 000000016

Blue: On overloading with valid request messages

**Orange:** On overload with invalid request messages

Green: On flooding with messages of ID 1C000000<sub>16</sub>

#### Line shape significance:

**Solid**: High priority ([0,3]) messages

Dashed: Low priority ([4,7]) messages



estingan Local Testba

33

### Disassion



- High-volume DoS attack
- Effect on the Kenworth T270 research truck
  - All transmission from the ECM stopped at 3 millisecond injection interval
  - Transmission did not shift gears
  - Engine speed remained high
- Possible defense
  - Not to process more than a certain number of requests in a millisecond on the host
  - Requires ECU firmware change

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Three denial-of-service attacks on the data-link layer specifications

The Testing Setup

The Request Overload Attack

The Connection Exhaustion Attack

The False Request To Send (RTS) Attack

Summary



- Specification
  - Exactly one established connection for unidirectional transfer
  - Connection can be kept open for 1250 milliseconds by not sending the end of message acknowledgment
  - CTS message can be sent to request message retransmission
- Attack
  - Create multiple spoofed connections
  - Keep connections open by
    - Sending CTS at intervals less than 1250 ms
    - Not sending of end of message acknowledgement
- Expected result
  - Denial of legitimate connection attempts to the target


## TestingenRemte Testbench

•

•

| Malicious node<br>(BeagleBone Black) BB1<br>Spoofed controller source<br>addresses 11 <sub>16</sub> and 0B <sub>16</sub><br>• Simulated on (BeagleBone<br>Black) BB2 |                                                                                         | Γ      | BB1->Engine-\#1 request       | 00EA0011 | EB FE 00 00 00 00 00 00    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------|-------------------------------|----------|----------------------------|
|                                                                                                                                                                      | Illegitimate<br>connection<br>initiation<br>Illegitimate<br>connection<br>data transfer |        | Engine-\#1->BB1 RTS           | 18EC1100 | 10 2C 00 07 FF EB FE 00    |
|                                                                                                                                                                      |                                                                                         |        | BB1->Engine-\#1 CTS           | 00EC0011 | 11 07 01 FF FF EB FE 00    |
|                                                                                                                                                                      |                                                                                         |        | BB1->Engine-\#1 request       | OOEAOOOB | EB FE 00 00 00 00 00 00    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 RTS           | 18EC0B00 | 10 2C 00 07 FF EB FE 00    |
|                                                                                                                                                                      |                                                                                         |        | BB1->Engine-\#1 CTS           | OOECOOOB | 11 07 01 FF FF EB FE 00    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB1100 | 01 43 4D 4D 4E 53 2A 36    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB1100 | 02 43 20 75 30 37 44 30    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB1100 | 03 38 33 30 30 30 30 30    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB1100 | 04 30 30 2A 30 30 30 30    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB1100 | 05 30 30 30 30 2A 78 30    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB1100 | 06 36 42 42 42 42 42 42 42 |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB1100 | 07 42 2A FF FF FF FF FF    |
|                                                                                                                                                                      |                                                                                         | $\neg$ | Engine-\#1->BB1 Data Transfer | 18EB0B00 | 01 43 4D 4D 4E 53 2A 36    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB0B00 | 02 43 20 75 30 37 44 30    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB0B00 | 03 38 33 30 30 30 30 30    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB0B00 | 04 30 30 2A 30 30 30 30    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB0B00 | 05 30 30 30 30 2A 78 30    |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB0B00 | 06 36 42 42 42 42 42 42 42 |
|                                                                                                                                                                      |                                                                                         |        | Engine-\#1->BB1 Data Transfer | 18EB0B00 | 07 42 2A FF FF FF FF FF    |
|                                                                                                                                                                      |                                                                                         |        | BB2->Engine-\#1 request       | 00EA0011 | EC FE 00 00 00 00 00 00    |
|                                                                                                                                                                      | legitimate<br>connection<br>refusal<br>Illegitimate                                     |        | BB2->Engine-\#1 request       | OOEAOOOB | EC FE 00 00 00 00 00 00    |
|                                                                                                                                                                      |                                                                                         |        | BB2->Engine-\#1 request       | 00EA0011 | EC FE 00 00 00 00 00 00    |
|                                                                                                                                                                      |                                                                                         |        | BB2->Engine-\#1 request       | OOEAOOOB | EC FE 00 00 00 00 00 00    |
|                                                                                                                                                                      |                                                                                         |        | BB2->Engine-\#1 request       | 00EA0011 | EC FE 00 00 00 00 00 00    |
|                                                                                                                                                                      |                                                                                         |        | BB2->Engine-\#1 request       | OOEAOOOB | EC FE 00 00 00 00 00 00    |
|                                                                                                                                                                      |                                                                                         |        | BB2->Engine-\#1 request       | 00EA0011 | EC FE 00 00 00 00 00 00    |
|                                                                                                                                                                      |                                                                                         |        | BB2->Engine-\#1 request       | OOEAOOOB | EC FE 00 00 00 00 00 00    |
|                                                                                                                                                                      | connection                                                                              |        | BB1->Engine-\#1 CTS           | 00EC0011 | 11 07 01 FF FF EB FE 00    |
|                                                                                                                                                                      |                                                                                         |        | BB1->Engine-\#1 CTS           | OOECOOOB | 11 07 01 FF FF EB FE 00    |
|                                                                                                                                                                      | keep alive                                                                              | _      |                               |          |                            |

tingon Local Testben B



### Disassion

- Low-volume DoS attack
- Effect on the Kenworth T270 research truck
  - No physical impact
  - Proprietary communication can be hampered
  - Diagnostic sessions can be hampered
- Possible defense
  - Not to respond to more than a certain number of CTS retransmit requests
  - Requires ECU firmware change



Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Three denial-of-service attacks on the data-link layer specifications

The Testing Setup

The Request Overload Attack

The Connection Exhaustion Attack

The False Request To Send (RTS) Attack



- Specification
  - If multiple RTS messages are received from the same source address, the most recently received shall be considered without notifying the sender of the first RTS
- Attack
  - Spoof connection creator
  - Send second RTS with smaller data size
- Expected result
  - Data buffer reallocation and buffer overflow



# Testing

- ECUs in either testbed did not accept connection requests
  - Possibly an authentication issue
- Vulnerable simulation created
  - Execution with Valgrind memory profiler shows heap overflow







- Effect on the Kenworth T270 research truck
  - No evidence of success
    - ECUs did not accept connection attempts
- Basis for test software generation in ECU micro patching
  - Challenge problems for multiple ECU micro patching hackathons
- Possible defense
  - Mismatching number of bytes and packets in the RTS must be checked before reallocation
  - Second (falsifiable) RTS can be ignored

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Three denial-of-service attacks on the data-link layer specifications

The Testing Setup

The Request Overload Attack

The Connection Exhaustion Attack

The False Request To Send (RTS) Attack

# Simary

#### **Research Question**

Can weaknesses in the data-link layer specifications of SAE J1939 be exploited to attack in-MHD vehicle ECUs?



#### Contribution

Three denial-of-service attacks that utilize protocol specifications made in the SAE J1939 standards

- Noticeable impacts on network communication from target ECUs
- Noticeable impact on a research truck for first two attacks

# Online anomaly-based intrusion detection system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Behavioral Feature Engineering

Network Behavior Modelling Through Feature Value Time Series

Detecting Anomalous Behavior at Runtime

**Performance Analysis** 

# Online anomaly-based intrusion detection system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Behavioral Feature Engineering

Network Behavior Modelling Through Feature Value Time Series

Detecting Anomalous Behavior at Runtime

**Performance Analysis** 

# Report Preachae Graph





# Online anomaly-based intrusion detection system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Behavioral Feature Engineering

Network Behavior Modelling Through Feature Value Time Series

Detecting Anomalous Behavior at Runtime

**Performance Analysis** 

## Network Behavior Modelling Through Feature Value Time-Series

- Attack detection hypothesis
  - Under normal driving conditions NGFC and EWS time-series are usually stationary with the possibility of short trends
  - But upon malicious message injections, they exhibit significant abrupt changes that can be detected



Time-series of Feature Values calculated on 1 sec (Sampling Window) RPGs

# Online anomaly-based intrusion detection system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Behavioral Feature Engineering

Network Behavior Modelling Through Feature Value Time Series

Detecting Anomalous Behavior at Runtime

**Performance Analysis** 



# Online anomaly-based intrusion detection system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Behavioral Feature Engineering

Network Behavior Modelling Through Feature Value Time Series

Detecting Anomalous Behavior at Runtime

**Performance Analysis** 



#### Attack Detection Results For Attack Claim Attack on Kenworth T270



### Attack Detection Results For Network Overload Attack on Kenworth T270



$$Precision = 100 * \frac{No.of flagged attack windows}{Total no.of windows} --- trainingSetSize = 5$$

$$-- trainingSetSize = 10$$

### Attack Detection Results For Fizzing Attack (Without Data Fizzing) on Kenworth T270



$$Precision = 100 * \frac{No.of flagged attack windows}{Total no.of windows} ---- trainingSetSize = 5$$
$$--- trainingSetSize = 10$$

#### Attack Detection Results For Fizzing Attack (With Data Fizzing) on Kenworth T270



$$Precision = 100 * \frac{No.of flagged attack windows}{Total no.of windows} ---- trainingSetSize = 5$$

$$--- trainingSetSize = 10$$

### Attack Detection Results For Request Overload Attack on Kenworth T270



### Attack Detection Results For Engine Control Attack on Kenworth T270



$$Precision = 100 * \frac{No.of flagged attack windows}{Total no.of windows} ---- trainingSetSize = 5$$

$$--- trainingSetSize = 10$$





Madic

### False Alarm Detection Results For Normal Driving on Kenworth T270



False Alarm Rate = 
$$100 * \frac{No.of flagged windows}{Total no.of windows}$$
---- trainingSetSize = 5---- trainingSetSize = 10

## Hgh-level Overview of Overvations

Less than 4% false positives and 100% detection accuracy on most occasions when

- 90% HoltsConfidence
- 10 trainingSetSize

# Online anomaly-based intrusion detection system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

Behavioral Feature Engineering

Network Behavior Modelling Through Feature Value Time Series

Detecting Anomalous Behavior at Runtime

**Performance Analysis** 

# Simary

#### **Research Question**

Can a system be designed to detect network anomalies on an SAE J1939 network in an online manner?



#### Contribution

Real-time SAE J1939-based intrusion detection system that does not require offline training

- Uses time series forecasting using minimal historical data to predict an interval of expected behavioral feature values and compares them with the latest values to flag anomalies
- 100% detection precision during most attack experiments
- Less than 4% false positive rate during normal driving experiments

Real-time rule-based intrusion detection and prevention system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

**Conclusion and Future Work** 

Towards Rule-based Identification of in-MHD Vehicle Cyber Attacks

**Rule Enforcement** 

**Performance Analysis** 

Real-World Demonstration and Discussion

Real-time rule-based intrusion detection and prevention system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

**Conclusion and Future Work** 

Towards Rule-based Identification of in-MHD Vehicle Cyber Attacks

**Rule Enforcement** 

**Performance Analysis** 

Real-World Demonstration and Discussion

## Detection Feature: Message Content

- Invalid PGN, DA, SA
  - For example
    - Spoofed source address
    - Unsupported PGN used for fuzzing
- Hazardous parameter values
  - For example
    - Very low torque (less than 0%) request to the engine controller

# RileType. Rile



Message of interest

#### Example Rile Enforcement $\bigcirc$ SA SA DA SA PGN DA **SPN** DA SPN PGN PGN SPN 518 518 **518** 0 0 0 -125 0 0 0 -125 0 0 0 -125

| Type | Description             | Thre<br>shold | Inte<br>rval | MOI/NetPFilter |     |    |    |         |              |
|------|-------------------------|---------------|--------------|----------------|-----|----|----|---------|--------------|
|      |                         |               |              | Relation       | PGN | DA | SA | PFilter |              |
|      |                         |               |              |                |     |    |    | SPN     | Value        |
| Rule | Very low torque request | 1             | N/A          | moi            | 0   | 0  |    | 518     | [-125, -125] |

Message of interest

Triggers rule

Is acted upon

### Detection Feature: Transmission Interval

- Messages inserted at very small intervals can lead to denial-ofservice (HVDoS)
  - For example
    - Network overload with CAN ID 0
    - Request overload
- Attack is not effective if transmission interval is above certain value
- Messages transmitted below a hazardous interval can be flagged






Rule is **triggered** when message of interest is being transmitted at an interval less than the specified from the previous message of interest

Message of interest is **acted upon** if it triggers rule and the previous *k* message of interest have all triggered rule, *k* being >= Threshold -1.



## Example IRileEnforcement



R



|       |                                       | Thre  | Inte<br>rval | MOI/NetPFilter |       |   |     |         |          |  |  |
|-------|---------------------------------------|-------|--------------|----------------|-------|---|-----|---------|----------|--|--|
| Type  | Description                           | shold |              | Relation       | PCN   |   | SA  | PFilter |          |  |  |
|       |                                       | SHOIU |              | relation       |       |   |     | SPN     | Value    |  |  |
| IRule | Connection exhaustion from a diagnos- | 5     | 1250         | moi            | 60416 | 0 | 249 | 2556    | [17, 17] |  |  |
|       | tic tool on engine controller         |       |              |                |       |   |     |         |          |  |  |

74

### DetectionFeature: TransmissionContext

- Some messages can be hazardous when transmitted in certain context
  - Address claim or request to unlock door when vehicle is in motion
  - 0% torque request when vehicle is at speeds below 30 mph
- Some adhoc messages can only be transmitted under certain context
  - Out of context transmissions used for attack can be flagged



#### Familities of Context

If C is a context then it is a set where  $\forall c \in C, c \text{ is a two tuple} < p, V >$ , where V is a range of values of parameter p and no parameter is repeated in C.

We say that a parameter is *active* in a context C if  $\exists c \in C$  such that the first element of c is the parameter whose latest transmitted value lies within the second element c.

We say that a context is *active* if all the constituent parameters are active.

Example Context C:

- Vehicle speed within [0, 30] km/h
- Electronic brakes pressed i.e. status between [1,1]

- Vehicle speed is active in *C* if it is within [0, 30] km/h
- Status of electronic brakes is active in C if it is between [1,1]

Context C is active if

- Vehicle speed is active in C
- Status of electronic brakes is active in C

Rule Type: *Chile* 



Rule is **triggered** when message of interest is being transmitted and context is active

Message of interest is **acted upon** if it triggers rule and the previous *k* message of interest have all triggered rule, *k* being >= Threshold -1.

# Example Rule Enforcement



- Parameter "ABS active"
  deactivated
- Context deactivated

- Parameter "ABS active" activated
- Context activated

| PGN   | DA  | SA | SPN<br>563 | • | PGN | DA | SA | PGN   | DA  | SA | SPN<br>563 | • | PGN | DA | SA |
|-------|-----|----|------------|---|-----|----|----|-------|-----|----|------------|---|-----|----|----|
| 61441 | 255 | 11 | 1          | j | 0   | 0  | 11 | 61441 | 255 | 11 | 0          |   | 0   | 0  | 11 |

| Type  |                                 | Thre  | Inte<br>rval | MOI/NetPFilter |       |     |    |         |           |  |  |
|-------|---------------------------------|-------|--------------|----------------|-------|-----|----|---------|-----------|--|--|
|       | Description                     | shold |              | Relation       | PCN   |     | SA | PFilter |           |  |  |
|       |                                 |       |              | Itelation      | IGIN  | DA  | SA | SPN     | Value     |  |  |
| CBulo | Engine control request from ABS | 1     | N/A          | moi            | 0     | 0   | 11 |         |           |  |  |
| Undle | when it is not active           |       |              | context        | 61441 | 255 | 11 | 563     | $[0,\!0]$ |  |  |

## RuleActions

- Abstractified in this work
- Possible action strategies
  - Raising an alarm
  - Message disruption
    - Transmission of 6 consecutive 0s when bit stuffing is applied
  - Event logging
  - Vehicle restart



### RuleConstraints

- If a PGN is used in an MOI object, it cannot be used in a NetPFilter object and vice-versa
- For any MOI object if SA is specified, then so should DA
- No two rules of the same type can exist without PFilters but with the same PGN, DA and SA
  - Implies that maximum number of rules with the same PGN, DA, SA but no Pfilters can be two, one of type Rule and another of type IRule



Real-time rule-based intrusion detection and prevention system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

**Conclusion and Future Work** 

Towards Rule-based Identification of in-MHD Vehicle Cyber Attacks

**Rule Enforcement** 

**Performance Analysis** 

Real-World Demonstration and Discussion

Summary

Real-time rule-based intrusion detection and prevention system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

**Conclusion and Future Work** 

| Towards Rule-based Identification of in-MHD Vehicle Cyber Attacks |               |
|-------------------------------------------------------------------|---------------|
| Rule Enforcement                                                  | Preprocessing |
|                                                                   | Runtime       |
| Performance Analysis                                              | approach      |
| Real-World Demonstration and Discussion                           |               |
| Summary                                                           |               |
| -                                                                 |               |

Real-time rule-based intrusion detection and prevention system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

Conclusion and Future Work

| Towards Rule-based Identification of in-MHD Vehicle Cyber Attacks |               |
|-------------------------------------------------------------------|---------------|
| Rule Enforcement                                                  | Preprocessing |
|                                                                   | Runtime       |
| Performance Analysis                                              | approach      |
| Real-World Demonstration and Discussion                           |               |
| Summary                                                           |               |

CANRules

|    | ncc, | cth, | last_t, |               |         |        | FieldFilter                            |                  |                   |       |
|----|------|------|---------|---------------|---------|--------|----------------------------------------|------------------|-------------------|-------|
| ID | _ncc | hold | val     | Rela-<br>tion | t_bytes | t_bits | t_masks                                | first<br>_length | value             | prevm |
| R1 | 0,0  | 0,2  | M,9     |               |         |        |                                        |                  |                   |       |
| R2 | 0,0  | 0,1  | M,0     |               |         |        |                                        |                  |                   |       |
| R3 | 0,0  | 0,1  | M,0     | moi           | 2,3     | 1,1    | ff <sub>16</sub> , ff <sub>16</sub>    | 8                | [400,<br>800]     | False |
|    | 0.1  | 0.5  | MO      | moi           |         |        |                                        |                  |                   |       |
| R4 | 0,1  | 0,0  | WI, U   | context       | 4,4     | 5,5    | 30 <sub>16</sub> ,<br>30 <sub>16</sub> | 2                | [1,1]             | False |
| R5 | 0,0  | 0,1  | M, 5    | moi           | 1,3     | 1,1    | ff <sub>16</sub> , ff <sub>16</sub>    | 8                | [65259,<br>65259] | False |

Rules

|        |     |           |          |          | I                   | MOI/Net          | PFilter          |      |                   |
|--------|-----|-----------|----------|----------|---------------------|------------------|------------------|------|-------------------|
| Туре   | ID  | Threshold | Interval | Relation | PGN                 |                  | ςΔ               | Pf   | Filter            |
|        |     |           |          | Relation | TON                 |                  | 57               | SPN  | Value             |
| IRule  | R1  | 2         | 9        | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> |                  |      |                   |
| Rule   | R2  | 1         | N/A      | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 3116             |      |                   |
| Rule   | R3  | 1         | N/A      | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 0F <sub>16</sub> | 898  | [50,100]          |
| CRulo  | D٨  | 5         | Ν/Δ      | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 0F <sub>16</sub> |      |                   |
| Citule | 114 | 5         |          | context  | 0FEE1 <sub>16</sub> | FF16             | 00 <sub>16</sub> | 597  | [1,1]             |
| IRule  | R5  | 1         | 5        | moi      | 0EA00 <sub>16</sub> | 0F <sub>16</sub> | 0B <sub>16</sub> | 2540 | [65259,<br>65259] |





Rules

|       |    | Threshold |          |          | I                   | MOI/Net          | PFilter          |      |                   |
|-------|----|-----------|----------|----------|---------------------|------------------|------------------|------|-------------------|
| Туре  | ID |           | Interval | Relation | PGN                 |                  | 54               | Pf   | Filter            |
|       |    |           |          | Relation | FON                 |                  | 54               | SPN  | Value             |
| IRule | R1 | 2         | 9        | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> |                  |      |                   |
| Rule  | R2 | 1         | N/A      | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 3116             |      |                   |
| Rule  | R3 | 1         | N/A      | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 0F <sub>16</sub> | 898  | [50,100]          |
| CPulo | БЛ | 5         |          | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 0F <sub>16</sub> |      |                   |
| Crule | Π4 | 5         |          | context  | 0FEE1 <sub>16</sub> | FF16             | 00 <sub>16</sub> | 597  | [1,1]             |
| IRule | R5 | 1         | 5        | moi      | 0EA00 <sub>16</sub> | 0F <sub>16</sub> | 0B <sub>16</sub> | 2540 | [65259,<br>65259] |

#### CANRules

|    | ncc, | cth,<br>thres | last_t, |               |         |        | FieldFilter                            |                  |                   |       |
|----|------|---------------|---------|---------------|---------|--------|----------------------------------------|------------------|-------------------|-------|
| ID | _ncc | hold          | val     | Rela-<br>tion | t_bytes | t_bits | t_masks                                | first<br>_length | value             | prevm |
| R1 | 0,0  | 0,2           | M,9     |               |         |        |                                        |                  |                   |       |
| R2 | 0,0  | 0,1           | M,0     |               |         |        |                                        |                  |                   |       |
| R3 | 0,0  | 0,1           | M,0     | moi           | 2,3     | 1,1    | ff <sub>16</sub> , ff <sub>16</sub>    | 8                | [400,<br>800]     | False |
|    | 0.1  | 0.5           | ΜΟ      | moi           |         |        |                                        |                  |                   |       |
| R4 | 0,1  | 0,5           | IVI, U  | context       | 4,4     | 5,5    | 30 <sub>16</sub> ,<br>30 <sub>16</sub> | 2                | [1,1]             | False |
| R5 | 0,0  | 0,1           | M, 5    | moi           | 1,3     | 1,1    | ff <sub>16</sub> , ff <sub>16</sub>    | 8                | [65259,<br>65259] | False |



| PGN                 | DA               | SA               | Rule | Relation | Indexes |  |  |  |
|---------------------|------------------|------------------|------|----------|---------|--|--|--|
| <sup>00000</sup> 16 | <sup>00</sup> 16 |                  | R1   | moi      | 0       |  |  |  |
| <sup>00000</sup> 16 | <sup>00</sup> 16 | 3116             | R2   | moi      | 0       |  |  |  |
| 0000040             | 0040             |                  | R3   | moi      | []      |  |  |  |
| 0000016             | 0016             | <sup>01</sup> 16 | R4   | moi      | []      |  |  |  |
| <sup>0FEE1</sup> 16 | FF16             | <sup>00</sup> 16 | R4   | context  | [0]     |  |  |  |
| 0EA00 <sub>16</sub> | <sup>0F</sup> 16 | <sup>0B</sup> 16 | R5   | moi      | 0       |  |  |  |
| L                   | -γ               | ]                |      |          |         |  |  |  |
| I                   | Keys             |                  |      | Value    | S       |  |  |  |

Rules

|        |     | Threshold | Interval |          | 1                   | MOI/Net          | PFilter          |      |                   |
|--------|-----|-----------|----------|----------|---------------------|------------------|------------------|------|-------------------|
| Туре   | ID  |           |          | Relation | PGN                 |                  | 54               | PF   | Filter            |
|        |     |           |          | Relation | FON                 |                  | 54               | SPN  | Value             |
| IRule  | R1  | 2         | 9        | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> |                  |      |                   |
| Rule   | R2  | 1         | N/A      | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 3116             |      |                   |
| Rule   | R3  | 1         | N/A      | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 0F <sub>16</sub> | 898  | [50,100]          |
| CPulo  | D1  | 5         | Ν/Δ      | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 0F <sub>16</sub> |      |                   |
| Citule | 114 | 5         |          | context  | 0FEE1 <sub>16</sub> | FF16             | 00 <sub>16</sub> | 597  | [1,1]             |
| IRule  | R5  | 1         | 5        | moi      | 0EA00 <sub>16</sub> | 0F <sub>16</sub> | 0B <sub>16</sub> | 2540 | [65259,<br>65259] |

CANRules

|    | ncc, | cth, | last_t, | st_t,<br>FieldFilter |         |        |                                        |                  |                   |       |  |  |  |
|----|------|------|---------|----------------------|---------|--------|----------------------------------------|------------------|-------------------|-------|--|--|--|
| ID | _ncc | hold | val     | Rela-<br>tion        | t_bytes | t_bits | t_masks                                | first<br>_length | value             | prevm |  |  |  |
| R1 | 0,0  | 0,2  | M,9     |                      |         |        |                                        |                  |                   |       |  |  |  |
| R2 | 0,0  | 0,1  | M,0     |                      |         |        |                                        |                  |                   |       |  |  |  |
| R3 | 0,0  | 0,1  | M,0     | moi                  | 2,3     | 1,1    | ff <sub>16</sub> , ff <sub>16</sub>    | 8                | [400,<br>800]     | False |  |  |  |
|    | 0.1  | 0.5  | ΜΟ      | moi                  |         |        |                                        |                  |                   |       |  |  |  |
| R4 | 0,1  | 0,0  | WI, U   | context              | 4,4     | 5,5    | 30 <sub>16</sub> ,<br>30 <sub>16</sub> | 2                | [1,1]             | False |  |  |  |
| R5 | 0,0  | 0,1  | M, 5    | moi                  | 1,3     | 1,1    | ff <sub>16</sub> , ff <sub>16</sub>    | 8                | [65259,<br>65259] | False |  |  |  |

Temporary Lookup Table

| PGN                 | DA               | SA               | Rule   | Relation | Indexes |
|---------------------|------------------|------------------|--------|----------|---------|
| <sup>00000</sup> 16 | <sup>00</sup> 16 |                  | R1     | moi      | 0       |
| <sup>00000</sup> 16 | <sup>00</sup> 16 | 3116             | R2     | moi      | 0       |
| <sup>00000</sup> 16 | <sup>00</sup> 16 | <sup>0F</sup> 16 | R3     | moi      | 0       |
|                     |                  |                  | R4     | moi      | 0       |
| <sup>0FEE1</sup> 16 | FF16             | <sup>00</sup> 16 | R4     | context  | [0]     |
| 0EA0016             | <sup>0F</sup> 16 | <sup>0B</sup> 16 | R5     | moi      | 0       |
| Keys                |                  |                  | Values |          |         |



Real-time rule-based intrusion detection and prevention system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

**Conclusion and Future Work** 

|     | Towards Rule-based Identification<br>of in-MHD Vehicle Cyber Attacks |               |
|-----|----------------------------------------------------------------------|---------------|
|     | Rule Enforcement                                                     | Preprocessing |
|     |                                                                      | Runtime       |
|     | Performance Analysis                                                 | approach      |
|     | Real-World Demonstration and Discussion                              |               |
|     | Summary                                                              |               |
| < C |                                                                      |               |





#### Attack Detection in TRACES ate

canrule.cth ++

Assume

triggered

Check if rule

This and the

(threshold -1)

interest have all

messages of

triggered rule

previous

rule is

is not

triggered



by the deployment device architecture



if *canrule.interval* > 0 then

if time - canrule.last\_t >

canrule.interval **then** 

canrule.cth  $\leftarrow 0$ 



#### Process Retrieved Targets with Rlinks





by the deployment device architecture

#### Process Retrieved Targets with Rlinks





## Context Update

is active

deactivated

Update active

Maintain

status



\*\* M = Maximum integer value supported by the deployment device architecture

indexes: Integer [ 0.. n]

#### Process Retrieved Targets with Rlinks





by the deployment device architecture

### RileEnforcement





Real-time rule-based intrusion detection and prevention system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

**Conclusion and Future Work** 

Towards Rule-based Identification of in-MHD Vehicle Cyber Attacks

**Rule Enforcement** 

**Performance Analysis** 

Real-World Demonstration and Discussion

Summary

### Preliminaries

- Analysis question: How many rules can be enforced in the worst-case?
  - How many rules without Pfilters can be enforced in the TRACE state?
  - How many rules with Pfilters can be enforced in the BUFFER state ?
- Experiment platform: Embedded Automotive Application Development Boards
  - Teensy 3.6
    - 180MHz ARM Cortex-M4 processor
    - 256 KB of RAM
  - Teensy 4.1
    - 600MHz ARM Cortex-M7 processor
    - 1024 KB of RAM



- How many rules can be enforced in the worst-case?
  - How many rules without Pfilters can be enforced in the TRACE state?
  - How many rules with Pfilters can be enforced in the BUFFER state ?



- Constant time activities in TRACE state
  - Rules without Pfilters are accessed via np\_canrules
  - Maximum 2 np\_canrules per Target
- Finish in less than 2 microseconds when 2 np\_canrules are accessed
  - 2 microseconds is the bitwidth on a 500 kbps CAN bus
  - Real-time irrespective of the number of rules





- How many rules can be enforced in the worst-case?
  - How many rules without Pfilters can be enforced in the TRACE state?
  - How many rules with Pfilters can be enforced in the BUFFER state ?





- Theoretical worst-case
  - 5 and 33
    - Maximum number of parameters in an SAE J1939 message can be 32
- Worst-case on research trucks
  - 9 and 63
    - Maximum number of parameters carried by a message on the Kenworth T270 is 17
  - 13 and 89
    - Maximum number of parameters carried by a message on the Kenworth T660 is 12
- Worst-case for rule database to detect known attacks
  - 72 and 457
    - Example rules reference one parameter per message

100



77 69

10

98765432

#### Experiment on Teensy 3.6 @ 180MHz ARM Cortex-M4 processor and 256 KB of RAM

20 21 22 22 25 25 30 33 33

(p)



- 1. Introduction
- 2. Background
- 3. Denial-of-Service Attacks on the SAE J1939 Transport Layer
- 4. Behavioral Anomaly-based Detection

#### 5. Rule-based Detection and Prevention

- 1. Towards Rule-based Identification of in-MHD Vehicle Cyber Attacks
- 2. Rule Enforcement
- 3. Performance Analysis
- 4. Real-World Demonstration and Discussion
- 5. Summary
- 6. Conclusion and Future work

Execute attacks on the research truck





Atac

La La

P

7

Ralts

Avarimen







Engine control attack from ABS controller







Address Claim attack on engine controller

Attack message107

Kenworth T270 driven on an airstrip



Kenworth T660 driven around an industrial block



#### Attacks

Engine control request from body controller

Very low torque request from engine controller (Pedal Jam)

Request overload on engine controller

**Connection exhaustion** from a diagnostic tool on engine controller detect the attacks

#### **Network overload**

Address claim after vehicle speed has reached 5 km/h

Engine control request from ABS when it is not active

0% torque request to engine retarder when a low vehicle speed (**Retarder Jam**)



Compose rules to

Rule

Database
## Experiment Results (False Alarm Generation)



## Experiment Results (False Alarm Himination)



# Organization

Real-time rule-based intrusion detection and prevention system

Introduction

Background

**Contribution 1** 

**Contribution 2** 

**Contribution 3** 

**Conclusion and Future Work** 

Towards Rule-based Identification of in-MHD Vehicle Cyber Attacks

**Rule Enforcement** 

**Performance Analysis** 

Real-World Demonstration and Discussion

Summary

# Simary

#### **Research Question**

Can a rule-based system be designed to detect threatening SAE J1939 messages as they are being transmitted and mitigate their effect based on features other than message content only?



**Contribution** A rule-based intrusion detection and prevention system that

- Allows identifying malicious messages based on features other than message content only
- Is real-time for a certain number of rules and can be used to disrupt malicious messages in transmission

# Organization

Introduction

Background

**Contribution 1** 

Contribution 2

**Contribution 3** 

**Conclusion and Future Work** 



#### Topic

• SAE J1939 specific cyber security for medium and heavy-duty vehicles

#### **Research questions**

- Can weaknesses in the data-link layer specifications of SAE J1939 be exploited to attack in-MHD vehicle ECUs?
- Can a system be designed to detect network anomalies on an SAE J1939 network in an online manner?
- Can a rule-based system be designed to detect threatening SAE J1939 messages as they are being transmitted and mitigate their effect based on features other than message content only?

#### Contributions

- Three denial-of-service attacks on the data-link layer specifications
- A online anomaly-based intrusion detection system
- A real-time rule-based intrusion detection and prevention systems that can identify messages that cannot be flagged based on message content only

#### Learning

 SAE J1939 specifications can be leveraged to design both offensive and defensive security solutions for medium and heavy-duty vehicles

## Future Works

### Extending to Other Areas of Interest

- Protocol specifications of other types of networks can be exploited
- Defensive solutions are high-level: may be deployable on other types of networks

### Remote Testbenches and Generation of Research Data

- Outsourcing on research equipment's
- Reconfigurable testbench
- Network data dissemination for research and rule-generation

### Hybrid Detection and Prevention Systems

- Detect unknown (0-day) attacks as well as known attacks
- Leverage context to detect and suppress false alarms

# Accomplishments

#### Publications

- S. Mukherjee, H. Shirazi, I. Ray, J. Daily, and R. Gamble, "Practical DoS Attacks on Embedded Networks in Commercial Vehicles," in *International Conference on Information Systems Security*, Jaipur, Rajasthan, India, 2016, pp. 23--42. doi: <u>10.1007/978-3-319-49806-5\_2</u>.
- S. Mukherjee, J. Walkery, I. Rayz, and J. Daily, "A Precedence Graph-Based Approach to Detect Message Injection Attacks in J1939 Based Networks," in 2017 15th Annual Conference on Privacy, Security and Trust (PST), Aug. 2017, pp. 67–6709. doi: 10.1109/PST.2017.00018.
- S. Mukherjee, J. C. Van Etten, N. R. Samyukta, J. Walker, I. Ray, and I. Ray, "TruckSTM: Runtime Realization of Operational State Transitions for Medium and Heavy Duty Vehicles," ACM Trans. Cyber-Phys. Syst., vol. 4, no. 1, pp. 1–25, Jan. 2020, doi: 10.1145/3300183.
- M. T. Campo, S. Mukherjee, and J. Daily, "Real-Time Network Defense of SAE J1939 Address Claim Attacks," SAE Int. J. Commer. Veh., vol. 14, no. 3, Aug. 2021, doi: 10.4271/02-14-03-0026.
- Mukherjee, S. and Daily, J. (2021), Towards a Software Defined Truck. INCOSE International Symposium, 31: 1019-1034. https://doi.org/10.1002/j.2334-5837.2021.00884.x

#### Awards

• <u>Recipient</u> of the platinum award in CSU Ventures: Drivers of Innovation category at the CSU graduate showcase

Thank you for attending my presentation



# State-of-the-art in In-Vehicle Searity

Drawbacks

| Sender authentication-<br>based   | <ul> <li>Sender agnostic message processing</li> <li>Compromise of legitimate sender</li> </ul> |
|-----------------------------------|-------------------------------------------------------------------------------------------------|
| Behavioral Anomaly-<br>Based IDPS | <ul> <li>Current solutions offline trained</li> </ul>                                           |
| Specification-Based<br>IDPS       | <ul> <li>Attacks can be specification abiding</li> </ul>                                        |
| Rule-Based IDPS                   | <ul> <li>Current solutions use rules based on message content<br/>only</li> </ul>               |

\*\* IDPS: Intrusion Detection and Prevention Systems

# Reviewof In-Vehicle Searity Solutions: Gyptography-based

#### **General Method**

Authenticate messages through digital signatures created using pre-shared keys

### **Published Works**

- CAN specific
  - Generate digital-signature from CAN ID and Data [Groz17, Kura24]
- SAE J1939 specific
  - Generate digital-signature from SE J1939 message fields [Jich22, Murv18]

#### Pros

• No false positives

#### Cons

- Resource intensive
- Unable to detect attacks from legitimate but compromised senders
- Introduces communication overhead
- Key management can be challenging

# Reviewof In-Vehicle Searity Solutions: Anomaly-based

#### **General Method**

- Learn normal behavior from offline collected data
- Flag abnormal deviations from normal as attack

### **Published Work**

- Voltage-based
  - Flag abnormal voltage usage [Cho17, Choi18]
- Periodicity-based
  - Flag aperiodic transmissions [Tayl15, Moor17,Song16, Mill14,Cho16]
- Parameter-based
  - Predict parameter values using contextual information and compare actual value with predicted [Nara16]
  - SAE J1939 specific [Shir20, Shir22]

#### Pros

 Can detect unknown (0-day) attacks if it causes significant deviations from normal behavior

#### Cons

 Does not account for normal behavior that is not encountered during the training phase [Stac19]

# Reviewof In-Vehicle Searity Solutions: Specification-based

#### **General Method**

- Build reference model for normal behavior using manufacturer specifications
- Flag deviations from normal as attack

### **Published Work**

- Logical Expression-based
  - Convert manufacturer specifications to logical expressions and evaluate them on a host ECU [Stud15]
- Finite automation-based
  - Convert manufacturer specifications to finite automaton and flag abnormal transitions [Lars08]
- No SAE J1939 specific-method

#### Pros

• Can detect unknown (0-day) attacks if they violate specifications

#### Cons

• Unable to detect attacks that obey specifications

# Reviewof In-Vehicle Searity Solutions: Rulebased

#### **General Method**

- Create a database of attack patterns based on CAN ID and data
- Flag frames as malicious if matching patterns are found in the database

### **Published Work**

- CAN ID-based
  - Compare CAN ID with pre-defined whitelist or blacklist [Boud16, Daga17, Ansa17, Mats12, Abbo21]
- CAN data-based
  - Inspect CAN data for specific byte patterns [Ujji16, Lena21]
- No SAE J1939 specific-method

#### Pros

• Low false positives

#### Cons

• Not all malicious CAN frames can be identified based on their ID and data



Lowest CAN ID wins bus arbitration

SAEJ1999 Message Processing

DLC: Data Length Code CRC: Cyclic Redundancy Check ACK: Acknowledgement 123 EOF: End of Frame

SA: Source Address

SA: Source Address



Parameter Placen

# Advances in Testing on Local Testbench

| Unanswered questions from previous experiment                                                                                     | New experiment methods                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Was the drop in count was because of a request<br>overload or messages losing arbitration to higher<br>priority request messages? | <ul> <li>Rapidly send three different IDs and observe the effect: 00000000<sub>16</sub>, 1C000000<sub>16</sub>, 1CEA0000<sub>16</sub></li> <li>Drop in ECM traffic due to the last message but not on the second last, implies request overload is successful</li> </ul> |
| Did the rate of injection of the request messages had any relation with the effect of the attack?                                 | <ul> <li>Vary the rate of injection between 0.1 to 1<br/>milliseconds and observe the effect</li> </ul>                                                                                                                                                                  |
| Was the sensor simulator was dropping any messages<br>while forwarding traffic to and from the engine<br>controller?              | <ul> <li>Local testbench does not include the sensor<br/>simulator forwarding device</li> </ul>                                                                                                                                                                          |
| Does requesting a parameter group that is not present<br>with the engine controller have any effect on the<br>output traffic?     | <ul> <li>Send requests for valid and invalid parameter<br/>groups and observe the effect</li> </ul>                                                                                                                                                                      |

#### Message of interest ExampleRules and Their Enforcement Triggers rule Acted upon PGN PGN PGN DA DA SA R1 0 33 0 0 33 0 0 33 0 PGN SPN PGN SPN PGN SPN R2

|    |      |                                       |        | Into  | MOI/NetPFilter |      |                        |    |     |              |  |
|----|------|---------------------------------------|--------|-------|----------------|------|------------------------|----|-----|--------------|--|
|    | Type | Description                           | shold  | rvol  | Rolation       | PCN  |                        | SA | Р   | Filter       |  |
|    |      |                                       | siioiu | i vai | Relation       | IGIN | $\mathbf{D}\mathbf{A}$ | SA | SPN | Value        |  |
| R1 | Rule | Engine control request from body con- | 1      | N/A   | moi            | 0    | 0                      | 33 |     |              |  |
|    |      | troller                               |        |       |                |      |                        |    |     |              |  |
| R2 | Rule | Very low torque request               | 1      | N/A   | moi            | 0    | 0                      |    | 518 | [-125, -125] |  |

0

249 0

60416

0

249

0

60416

249 0

60416

0

## ExampleRules and Their Enforcement



|    |       |                                       | Thro  | Into | ${ m MOI/NetPFilter}$ |       |                        |     |                |          |  |
|----|-------|---------------------------------------|-------|------|-----------------------|-------|------------------------|-----|----------------|----------|--|
|    | Type  | Description                           | shold | rvel | Relation              | PCN   | ПΔ                     | SA  | $\mathbf{PF}$  | ilter    |  |
|    |       |                                       | SHOR  | Ivai | relation              | IGIN  | $\mathbf{D}\mathbf{A}$ | SA  | $\mathbf{SPN}$ | Value    |  |
| R1 | IRule | Request overload on engine controller | 1     | 5    | moi                   | 59904 | 0                      |     |                |          |  |
| 20 | IRule | Connection exhaustion from a diagnos- | 5     | 1250 | moi                   | 60416 | 0                      | 249 | 2556           | [17, 17] |  |
| KZ |       | tic tool on engine controller         |       |      |                       |       |                        |     |                |          |  |
| R3 | IRule | Network overload                      | 1     | 5    | moi                   | 0     | 0                      | 0   |                |          |  |

## ExampleRuleEnforcement



|            |        |                                       | Thre  | Into                        | MOI/NetPFilter |       |     |    |                    |           |  |
|------------|--------|---------------------------------------|-------|-----------------------------|----------------|-------|-----|----|--------------------|-----------|--|
|            | Type   | Description                           | shold | ryal                        | Relation       | PCN   | ПΔ  | SA | $\mathbf{PFilter}$ |           |  |
|            |        |                                       | Shord |                             |                | IGIN  | DA  | SA | $\mathbf{SPN}$     | Value     |  |
| <b>D</b> 4 | CBulo  | Address claim after vehicle speed has | 1     | Ν/Λ                         | moi            | 60928 |     |    |                    |           |  |
| R1 Un      | Onuie  | reached 5 km/h $$                     | 1     | 11/11                       | context        | 65265 | 255 | 0  | 84                 | [5,300]   |  |
| 50         | CBulo  | Engine control request from ABS       | 1     | Ν/Δ                         | moi            | 0     | 0   | 11 |                    |           |  |
| R2   CR    | Onule  | when it is not active                 | 1     | $  \mathbf{N} / \mathbf{A}$ | context        | 61441 | 255 | 11 | 563                | $[0,\!0]$ |  |
| 20         | CBule  | 0% torque request to engine retarder  | 1     | $N/\Delta$                  | moi            | 0     | 15  |    | 518                | [0,0]     |  |
| кЗ         | Ortuie | when a low vehicle speed              | L     |                             | context        | 65265 | 255 | 0  | 84                 | [0, 30]   |  |

# TenpraryLockupTableGeneration



| PGN | DA | SA | Rule | Relation | Indexes |
|-----|----|----|------|----------|---------|
|     |    |    |      |          |         |

- Temporary Lookup Table:
   PGN × DA × SA → Rule × {moi, context} × Indexes
- ∀x ∈Indexes[c], c is a record in the temporary lookup table
  - Empty if Relation[c] = moi
  - Otherwise,
    - $x \in z^+$  and
    - Rule[c].context[x].PGN = PGN[c],
    - Rule[c].context[x].DA = DA[c],
    - Rule[c].context[x].SA = SA[c]

## **CANRule** Generation



- threshold, interval and action are copied from the parent rule
- max\_ncc = cardinality of the context relation
- value = [(Value[i]-offset)/resolution for i in 0..1]
- t\_bytes, t\_bits, t\_masks, first\_length derived from the parameter placement notation R.x - S.w
- *R.x S.w, offset* and *resolution* obtained by querying the SAE J1939 digital annex using the SPN







#### Entries in the SAE J1939 Digital Annex

### Arbitration Field **String**Ceneration

Туре

IRule

Rule Rule

CRule

IRule

| SPN  | Position  | Length  | Resolution | Offset |
|------|-----------|---------|------------|--------|
| 2540 | 1.1 - 3.1 | 3 bytes | 1          | 0      |
| 597  | 4.5 - 4.5 | 2 bits  | 1          | 0      |
| 898  | 2.1 - 3.1 | 2 bytes | 0.125      | 0      |

| e   |  |
|-----|--|
| 00] |  |

|    | -         |          |          |                     |                  |                  |       | Rules             |   |  |
|----|-----------|----------|----------|---------------------|------------------|------------------|-------|-------------------|---|--|
|    |           |          |          | MOI/NetPFilter      |                  |                  |       |                   |   |  |
| ID | Threshold | Interval | Polation | PGN                 | DA               | 84               | P     | Filter            |   |  |
|    |           |          |          | Relation FGN DA 3   | 57               | SPN              | Value |                   |   |  |
| R1 | 2         | 9        | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> |                  |       |                   |   |  |
| R2 | 1         | N/A      | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 3116             |       |                   |   |  |
| R3 | 1         | N/A      | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 0F <sub>16</sub> | 898   | [50,100]          | , |  |
| D4 | 5         | NI/A     | moi      | 00000 <sub>16</sub> | 00 <sub>16</sub> | 0F <sub>16</sub> |       |                   |   |  |
| R4 | 5         | IN/A     | context  | 0FEE1 <sub>16</sub> | FF16             | 00 <sub>16</sub> | 597   | [1,1]             |   |  |
| R5 | 1         | 5        | moi      | 0EA00 <sub>16</sub> | 0F <sub>16</sub> | 0B <sub>16</sub> | 2540  | [65259,<br>65259] |   |  |

Arbitration Field Strings

0020020C0018

0020020C0016002112116

0020020C0016002002F16

00211120102E0F0B18

00211121112EE10018

|    | ncc, | cth, | last_t, |               | FieldFilter |        |                                        |                  |                   |       |  |
|----|------|------|---------|---------------|-------------|--------|----------------------------------------|------------------|-------------------|-------|--|
| ID | _ncc | hold | val     | Rela-<br>tion | t_bytes     | t_bits | t_masks                                | first<br>_length | value             | prevm |  |
| R1 | 0,0  | 0,2  | M,9     |               |             |        |                                        |                  |                   |       |  |
| R2 | 0,0  | 0,1  | M,0     |               |             |        |                                        |                  |                   |       |  |
| R3 | 0,0  | 0,1  | M,0     | moi           | 2,3         | 1,1    | ff <sub>16</sub> , ff <sub>16</sub>    | 8                | [400,<br>800]     | False |  |
|    | 0.1  | 0.5  | мо      | moi           |             |        |                                        |                  |                   |       |  |
| R4 | U, I | 0,5  | IVI, U  | context       | 4,4         | 5,5    | 30 <sub>16</sub> ,<br>30 <sub>16</sub> | 2                | [1,1]             | False |  |
| R5 | 0,0  | 0,1  | M, 5    | moi           | 1,3         | 1,1    | ff <sub>16</sub> , ff <sub>16</sub>    | 8                | [65259,<br>65259] | False |  |

\*\* M = Maximum integer value supported by the deployment device architecture

|          | PGN = 00000 <sub>16</sub> |       |          | DA = 00 <sub>16</sub> |                |       |         |    |
|----------|---------------------------|-------|----------|-----------------------|----------------|-------|---------|----|
| Priority | EDP                       | DP    | PF       |                       | PS             | S     | A       |    |
| ***      | 0                         | 0     | 0000     | 0000                  | 00000000       | ****  | ****    |    |
|          |                           | SA    | E J1939  | 9 PDU                 |                | * = D | on't ca | re |
| Identif  | ier                       | SRR   | IDE      | l                     | dentifier ext. |       | RTR     |    |
| ***0000  | 0000                      | 1     | 1        | 0000                  | 000000****     | ****  | *       |    |
| 0020020  | D <sub>16</sub>           |       |          | C00                   | 16             |       |         |    |
|          |                           | CAN A | Arbitrat | ion Fie               | ld             |       |         |    |





| 1 | С | 1        |
|---|---|----------|
| Т | Э | <b>_</b> |

L2Rules

## **Radix** Tree Generation

Threshold Interval

9

N/A

N/A

N/A

2

1

1

5

Relation

moi

moi

moi

moi

PGN

00000<sub>16</sub>

00000<sub>16</sub>

00000<sub>16</sub>

00000<sub>16</sub>

DA

Type

IRule

Rule

Rule

CRule

ID

R1

R2

R3

R4

| Entries in the SAE J1939 |
|--------------------------|
| Digital Annex            |

| SPN  | Position  | Length  | Resolution | Offset |
|------|-----------|---------|------------|--------|
| 2540 | 1.1 - 3.1 | 3 bytes | 1          | 0      |
| 597  | 4.5 - 4.5 | 2 bits  | 1          | 0      |
| 898  | 2.1 - 3.1 | 2 bytes | 0.125      | 0      |

#### Rules



|    | ncc,                                   | cth, | last_t, |               |         |        | FieldFilter                            |                  |                   |       |
|----|----------------------------------------|------|---------|---------------|---------|--------|----------------------------------------|------------------|-------------------|-------|
| ID | _ncc                                   | hold | val     | Rela-<br>tion | t_bytes | t_bits | t_masks                                | first<br>_length | value             | prevm |
| R1 | 0,0                                    | 0,2  | M,9     |               |         |        |                                        |                  |                   |       |
| R2 | 0,0                                    | 0,1  | M,0     |               |         |        |                                        |                  |                   |       |
| R3 | 0,0                                    | 0,1  | M,0     | moi           | 2,3     | 1,1    | ff <sub>16</sub> , ff <sub>16</sub>    | 8                | [400,<br>800]     | False |
|    | 0.1                                    | 0.5  | мо      | moi           |         |        |                                        |                  |                   |       |
| R4 | , 0,1                                  | 0,5  | 5 WI, 0 | context       | 4,4     | 5,5    | 30 <sub>16</sub> ,<br>30 <sub>16</sub> | 2                | [1,1]             | False |
| R5 | 0,0                                    | 0,1  | M, 5    | moi           | 1,3     | 1,1    | ff <sub>16</sub> , ff <sub>16</sub>    | 8                | [65259,<br>65259] | False |
|    | ** M – Movimum integer value supported |      |         |               |         |        |                                        | un n a sta d     |                   |       |

Radix Tree

11<sub>2</sub>1<sub>18</sub>

00<sub>2</sub>F<sub>16</sub>

00<sub>2</sub>

0102E0F0B16

1112EE10016

0





132

L2Rules

#### Entries in the SAE J1939 Digital Annex

002

111<sub>2</sub>

111<sub>2</sub>EE100<sub>16</sub>

# Target Generation

| SPN  | Position  | Length  | Resolution | Offset |
|------|-----------|---------|------------|--------|
| 2540 | 1.1 - 3.1 | 3 bytes | 1          | 0      |
| 597  | 4.5 - 4.5 | 2 bits  | 1          | 0      |
| 898  | 2.1 - 3.1 | 2 bytes | 0.125      | 0      |

#### Rules

|       |    | Threshold | Interval | MOI/NetPFilter |                     |                  |                     |                  |                   |  |  |
|-------|----|-----------|----------|----------------|---------------------|------------------|---------------------|------------------|-------------------|--|--|
| Туре  | ID |           |          | Relation       | PGN                 | DA               | SA                  | PFilter          |                   |  |  |
|       |    |           |          |                |                     |                  |                     | SPN              | Value             |  |  |
| IRule | R1 | 2         | 9        | moi            | 00000 <sub>16</sub> | 00 <sub>16</sub> |                     |                  |                   |  |  |
| Rule  | R2 | 1         | N/A      | moi            | 00000 <sub>16</sub> | 00 <sub>16</sub> | 3116                |                  |                   |  |  |
| Rule  | R3 | 1         | N/A      | moi            | 00000 <sub>16</sub> | 00 <sub>16</sub> | 0F <sub>16</sub>    | 898              | [50,100]          |  |  |
| CPula | R4 | D4 5      | P4 5     | D4 5           | NI/A                | moi              | 00000 <sub>16</sub> | 00 <sub>16</sub> | 0F <sub>16</sub>  |  |  |
| CRule |    | 5         | 11/75    | context        | 0FEE1 <sub>16</sub> | FF16             | 00 <sub>16</sub>    | 597              | [1,1]             |  |  |
| IRule | R5 | 1         | 5        | moi            | 0EA00 <sub>16</sub> | 0F <sub>16</sub> | 0B <sub>16</sub>    | 2540             | [65259,<br>65259] |  |  |









4

R4

context

[0]

# Rutine Approach Walkthraugh



# Internet-based CANCentreller Signal Interpreter [Camp21]

- Interrupts are set to be fired on change of signal-level
- Output
  - pulse width: number of bits in pulse
  - signal-level: 0 or 1
  - starting bit index in the CAN frame: 1 (if SOF) or greater
    - Stuff bits are ignored
    - Pulse with single stuff bit is not returned

1<sup>st</sup> pulse: bit index= 1, signal-level = 0



between two consecutive interrupts/ bit-width in microseconds





Parameter Placen

### FieldFilter Placement-Related Field Derivation









- value = [(Value[i]-offset)/resolution for i in 0..1]
- t\_bytes, t\_bits, t\_masks, first\_length derived from the parameter placement notation R.x – S.w
- *R.x S.w, offset* and *resolution* obtained by querying the SAE J1939 digital annex using the SPN

# Rntinegetvalue(buffered data bytes, fieldfilter)

- If R = S
  - Apply t\_masks[0] to the t\_bytes[0]<sup>th</sup> data byte and return it after right shifting by t\_bits[0] -1
- Else
  - Apply t\_masks[1] to the t\_bytes[1]<sup>th</sup> (i.e. S<sup>th</sup>) data byte and assign it to a temporary variable after right shifting by t\_bits[1] -1.
  - Then append (using left shift and bitwise OR) the bits of bytes S -1 through R+1 to the temporary variable in that order.
  - Finally, we apply t\_masks[0] to the t\_bytes[0]<sup>th</sup> (i.e. R<sup>th</sup>) data byte and append it to the temporary variable after right shifting it by t\_bits[0] -1 and left shifting the temporary variable by first\_length.



# Bibliography

- [Stac19] Stephen Stachowski, Russ Bielawski, and André Weimerskirch, "Cybersecurity Research Considerations for Heavy Vehicles," University of Michigan, Ann Arbor, Transportation Research Institute, 2019.
- [Stud13] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaâniche, and Y. Laarouchi, "Survey on security threats and protection mechanisms in embedded automotive networks," in 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and Networks Workshop (DSN-W), Budapest, Hungary, Jun. 2013, pp. 1–12.
- [Louk19] G. Loukas, E. Karapistoli, E. Panaousis, P. Sarigiannidis, A. Bezemskij, and T. Vuong, "A taxonomy and survey of cyber-physical intrusion detection approaches for vehicles," Ad Hoc Networks, vol. 84, pp. 124–147, Mar. 2019
- [Babo05] F. Baboescu and G. Varghese, "Scalable packet classification," IEEE/ACM Trans. Networking, vol. 13, no. 1, pp. 2–14, Feb. 2005
- [Brut00] J. D. Brutlag, "Aberrant Behavior Detection in Time Series for Network Monitoring," in Proceedings of the 14th Systems Administration Conference (LISA 2000), New Orleans, Louisiana, USA, 2000, p. 9.

- [Boud16] A. Boudguiga, W. Klaudel, A. Boulanger, and P. Chiron, "A simple intrusion detection method for controller area network," in 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, May 2016, pp. 1–7. doi: 10.1109/ICC.2016.7511098.
- [Daga16] T. Dagan and A. Wool, "Parrot, a software-only anti-spoofing defense system for the CAN bus," in Embedded Security in Cars, EUROPE, Munich, Germany, 2016, p. 10.
- [Ansa17] M. R. Ansari, W. T. Miller, C. She, and Q. Yu, "A low-cost masquerade and replay attack detection method for CAN in automobiles," in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, May 2017, pp. 1–4. doi: 10.1109/ISCAS.2017.8050833.
- [Mats12] T. Matsumoto, M. Hata, M. Tanabe, K. Yoshioka, and K. Oishi, "A Method of Preventing Unauthorized Data Transmission in Controller Area Network," in 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, May 2012, pp. 1–5. doi: 10.1109/VETECS.2012.6240294.
- [Abbo16] S. Abbott-McCune and L. A. Shay, "Intrusion prevention system of automotive network CAN bus," in 2016 IEEE International Carnahan Conference on Security Technology (ICCST), Orlando, FL, USA, Oct. 2016, pp. 1–8. doi: 10.1109/CCST.2016.7815711.
- [Ujii16] Y. Ujiie et al., "A Method for Disabling Malicious CAN Messages by Using a CMI-ECU," presented at the SAE 2016 World Congress and Exhibition, Detriot, Michigan, USA, Apr. 2016. doi: 10.4271/2016-01-0068.
- [Gian17] H. Giannopoulos, A. M. Wyglinski, and J. Chapman, "Securing Vehicular Controller Area Networks: An Approach to Active Bus-Level Countermeasures," IEEE Vehicular Technology Magazine, vol. 12, no. 4, pp. 60–68, Dec. 2017, doi: 10.1109/MVT.2017.2647814.

- [Lars08] U. E. Larson, D. K. Nilsson, and E. Jonsson, "An approach to specification-based attack detection for in-vehicle networks," in 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, Netherlands, Jun. 2008, pp. 220–225. doi: 10.1109/IVS.2008.4621263.
- [Stud18] I. Studnia, E. Alata, V. Nicomette, M. Kaâniche, and Y. Laarouchi, "A language-based intrusion detection approach for automotive embedded networks," International Journal of Embedded Systems, vol. 10, no. 1, pp. 1--12, 2018.
- [Jin21] S. Jin, J.-G. Chung, and Y. Xu, "Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network," in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Online, May 2021, pp. 1–5. doi: 10.1109/ISCAS51556.2021.9401087.
- [Lars08A] U. E. Larson and D. K. Nilsson, "Securing vehicles against cyber attacks," in Proceedings of the 4th annual workshop on Cyber security and information intelligence research developing strategies to meet the cyber security and information intelligence challenges ahead CSIIRW '08, Oak Ridge, Tennessee, 2008, p. 1. doi: 10.1145/1413140.1413174.

[Zhan17] M. Zhang, C. Chen, T. Wo, T. Xie, M. Z. A. Bhuiyan, and X. Lin, "SafeDrive: Online Driving Anomaly Detection From Large-Scale Vehicle Data," IEEE Trans. Ind. Inf., vol. 13, no. 4, pp. 2087– 2096, 2017, doi: 10.1109/TII.2017.2674661.

- [Murv18] P.-S. Murvay and B. Groza, "Security Shortcomings and Countermeasures for the SAE J1939 Commercial Vehicle Bus Protocol," IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4325–4339, May 2018, doi: 10.1109/TVT.2018.2795384.
- [Bura16] Y. Burakova, B. Hass, L. Millar, and A. Weimerskirch, "Truck Hacking: An Experimental Analysis of the SAE J1939 Standard," in Proceedings of the 10th USENIX Conference on Offensive Technologies, Austin, TX, USA, 2016, pp. 211–220.

- [Mill14] C. Miller and C. Valasek, "A Survey of Remote Automotive Attack Surfaces," presented at the Blackhat USA, Las Vegas, NV, USA, 2014. [Online]. Available: <u>http://illmatics.com/remote%20attack%20surfaces.pdf</u>
- [Chec11] S. Checkoway *et al.*, "Comprehensive Experimental Analyses of Automotive Attack Surfaces," in *USENIX Security Symposium*, San Francisco, CA, USA, 2011, vol. 4, pp. 447–462.
- [Mill13] C. Miller and C. Valasek, "Adventures in automotive networks and control units," in Def Con 21, 2013, pp. 15--31. Accessed: Mar. 28, 2021. [Online]. Available: <u>https://www.youtube.com/watch?v=n70hlu9lcYo&ab\_channel=DEFCONConference</u>
- [Mukh16] S. Mukherjee, H. Shirazi, I. Ray, J. Daily, and R. Gamble, "Practical DoS Attacks on Embedded Networks in Commercial Vehicles," in *International Conference on Information Systems Security*, Jaipur, Rajasthan, India, 2016, pp. 23--42. doi: <u>10.1007/978-3-319-49806-5\_2</u>.
- [Mukh17] S. Mukherjee, J. Walkery, I. Rayz, and J. Daily, "A Precedence Graph-Based Approach to Detect Message Injection Attacks in J1939 Based Networks," in 2017 15th Annual Conference on Privacy, Security and Trust (PST), Aug. 2017, pp. 67–6709. doi: <u>10.1109/PST.2017.00018</u>.
- [Campo21] M. T. Campo, S. Mukherjee, and J. Daily, "Real-Time Network Defense of SAE J1939 Address Claim Attacks," SAE Int. J. Commer. Veh., vol. 14, no. 3, Aug. 2021, doi: <u>10.4271/02-14-03-0026</u>.
- [Mukh20] S. Mukherjee, J. C. Van Etten, N. R. Samyukta, J. Walker, I. Ray, and I. Ray, "TruckSTM: Runtime Realization of Operational State Transitions for Medium and Heavy Duty Vehicles," ACM Trans. Cyber-Phys. Syst., vol. 4, no. 1, pp. 1–25, Jan. 2020, doi: <u>10.1145/3300183</u>.

- [Dail16] J. Daily et al., "Towards a Cyber Assurance Testbed for Heavy Vehicle Electronic Controls," SAE Int. J. Commer. Veh., vol. 9, no. 2, pp. 339–349, Sep. 2016, doi: 10.4271/2016-01-8142.
- [Groz17] B. Groza, S. Murvay, A. V. Herrewege, and I. Verbauwhede, "LiBrA-CAN: Lightweight Broadcast Authentication for Controller Area Networks," ACM Trans. Embed. Comput. Syst., vol. 16, no. 3, pp. 1–28, Jul. 2017, doi: 10.1145/3056506.
- [Kura14] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and S. Horihata, "CaCAN -Centralized Authentication System in CAN (Controller Area Network)," in 14th Int. Conf. on Embedded Security in Cars (ESCAR 2014)., Munich, Germany, 2014, p. 10.
- [Choi18] W. Choi, H. J. Jo, S. Woo, J. Y. Chun, J. Park, and D. H. Lee, "Identifying ECUs Using Inimitable Characteristics of Signals in Controller Area Networks," IEEE Transactions on Vehicular Technology, vol. 67, no. 6, pp. 4757–4770, Jun. 2018, doi: 10.1109/TVT.2018.2810232.
- [Cho17] K.-T. Cho and K. G. Shin, "Viden: Attacker Identification on In-Vehicle Networks," in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas Texas USA, Oct. 2017, pp. 1109–1123. doi: 10.1145/3133956.3134001.
- [Tayl15] A. Taylor, N. Japkowicz, and S. Leblanc, "Frequency-based anomaly detection for the automotive CAN bus," in 2015 World Congress on Industrial Control Systems Security (WCICSS), Dec. 2015, pp. 45–49. doi: 10.1109/WCICSS.2015.7420322.
- [Song16] H. M. Song, H. R. Kim, and H. K. Kim, "Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network," in 2016 International Conference on Information Networking (ICOIN), Jan. 2016, pp. 63–68. doi: 10.1109/ICOIN.2016.7427089.
- [Moor17] M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell, "Modeling inter-signal arrival times for accurate detection of CAN bus signal injection attacks: a data-driven approach to in-vehicle intrusion detection," in Proceedings of the 12th Annual Conference on Cyber and Information Security Research, Oak Ridge Tennessee USA, Apr. 2017, pp. 1–4. doi: 10.1145/3064814.3064816.
- [Cho16] K.-T. Cho and K. G. Shin, "Fingerprinting Electronic Control Units for Vehicle Intrusion Detection," in Proceedings of the 25th USENIX Conference on Security Symposium, Austin, TX, USA, 2016, pp. 911--927.
- [Marc17] M. Marchetti and D. Stabili, "Anomaly detection of CAN bus messages through analysis of ID sequences," in 2017 IEEE Intelligent Vehicles Symposium (IV), Jun. 2017, pp. 1577–1583. doi: 10.1109/IVS.2017.7995934.
- [Katr20] S. Katragadda, P. J. Darby, A. Roche, and R. Gottumukkala, "Detecting Low-Rate Replay-Based Injection Attacks on In-Vehicle Networks," IEEE Access, vol. 8, pp. 54979–54993, 2020, doi: 10.1109/ACCESS.2020.2980523.
- [Marc16] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni, "Evaluation of anomaly detection for in-vehicle networks through information-theoretic algorithms," in 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, Italy, Sep. 2016, pp. 1--6. doi: 10.1109/RTSI.2016.7740627.
- [Mute11] M. Müter and N. Asaj, "Entropy-based anomaly detection for in-vehicle networks," in 2011 IEEE Intelligent Vehicles Symposium (IV), Jun. 2011, pp. 1110–1115. doi: 10.1109/IVS.2011.5940552.
- [Tayl16] A. Taylor, S. Leblanc, and N. Japkowicz, "Anomaly Detection in Automobile Control Network Data with Long Short-Term Memory Networks," in 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, Canada, Oct. 2016, pp. 130–139. doi: 10.1109/DSAA.2016.20.

- [Kang16] M.-J. Kang and J.-W. Kang, "A Novel Intrusion Detection Method Using Deep Neural Network for In-Vehicle Network Security," in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, May 2016, pp. 1–5. doi: 10.1109/VTCSpring.2016.7504089.
- [Mart17] F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone, "Car hacking identification through fuzzy logic algorithms," in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, Jul. 2017, pp. 1–7. doi: 10.1109/FUZZ-IEEE.2017.8015464.
- [Nara16] S. N. Narayanan, S. Mittal, and A. Joshi, "OBD\_SecureAlert: An Anomaly Detection System for Vehicles," in Proceedings of the 2016 IEEE International Conference on Smart Computing (SMARTCOMP), St Louis, MO, USA, May 2016, pp. 1--6. doi: 10.1109/SMARTCOMP.2016.7501710.
- [Wasi17] A. R. Wasicek, M. D. Pese, and A. Weimerskirch, "Context-aware Intrusion Detection in Automotive Control Systems," presented at the 5th ESCAR USA Conf, Ypsilanti, MI, 2017.
- [Nils09] D. K. Nilsson and U. E. Larson, "A Defense-in-Depth Approach to Securing the Wireless Vehicle Infrastructure," Journal of Networks, vol. 4, no. 7, pp. 552--564, 2009.
- [Szpa90] W. Szpankowski, "Patricia tries again revisited," J. ACM, vol. 37, no. 4, pp. 691–711, Oct. 1990, doi: 10.1145/96559.214080.
- E. Aliwa, O. Rana, C. Perera, and P. Burnap, "Cyberattacks and Countermeasures for In-Vehicle Networks," ACM Comput. Surv., vol. 54, no. 1, pp. 1–37, Mar. 2021, doi: <u>10.1145/3431233</u>.

[1]

## Abreviations

- MCU: Microcontroller Unit
- CAN: Controller Area Network
- PDU: Protocol Data Unit
- PGN: Parameter Group Number
- DA: Destination Address
- SA: Source Address
- RTS: Request to Send
- CTS: Clear to Send
- DT: Data Transfer
- EoMA: End of Message Acknowledgment
- Pr: Priority
- DP: Data Page

- PF: PDU Format
- PS: PDU Specific
- SOF: Start of Frame
- SRR: Substitute Remote Request
- IDE: Identifier Extension
- RTR: Remote Transmission Request
- DLC: Data Length Code
- CRC: Cyclic Redundancy Check
- ACK: Acknowledgment
- EOF: End of Frame
- EDP: Extended Data Page